Computing...

Input interpretation:

spring pendulum


Equation:

theta_f = theta_f(k, l_0, theta_i, l_i, m, t) | l_f = l_f(k, l_0, theta_i, l_i, m, t) |  \nk | spring constant\nl_0 | spring equilibrium length\ntheta_i | initial angle from vertical\nl_i | initial length\nm | mass\nt | time\ntheta_f | final angle from vertical\nl_f | final length\n(assuming the system is initially at rest)


Input values:

spring constant | 100 N\/m  (newtons per meter)\nspring equilibrium length | 1 meter\ninitial angle from vertical | 55°  (degrees)\ninitial length | 1 meter\nmass | 1 kg  (kilogram)\ntime | 6.1 seconds


Result:

final angle from vertical | -747.3 mrad  (milliradians)\n= -42.82°  (degrees)\n= -42 degrees 48 arc minutes 58.95 arc seconds\nfinal length | 101.8 cm  (centimeters)\n= 3.341 feet\n= 3\' 4.091"

Contact Pro Premium Expert Support