Computing...

Input information:

single-slit diffraction |  \nslit width | 0.0625 inches\nwavelength | 200 nm  (nanometers)


Result:

Rayleigh criterion angle | 25.99"  (arc seconds)\n= 126 µrad  (microradians)\n= 0.126 mrad  (milliradians)


Equation:

sin(theta_R) = lambda\/d |  \ntheta_R | Rayleigh criterion angle\nd | slit width\nlambda | wavelength\n(valid in far-field limit (Fraunhofer diffraction))


Diffraction pattern:



Normalized transmitted intensity vs. diffraction angle:

Frame


Zeros of transmitted intensity as a function of diffraction angle:

order of zero | diffraction angle | enclosed intensity\n1 | 0.007218° | 90.28%\n2 | 0.01444° | 95%\n3 | 0.02166° | 96.64%\n(7937 zeros of I_theta for 0° < theta < 90°; symmetric about theta  =  0°)

Contact Pro Premium Expert Support