Wolfram|Alpha

Computing...

Input:

(1 | 1 | 2\n-1 | 2 | 2\n3 | 2 | 3)^(-1) (matrix inverse)


Result:

1\/5(-2 | -1 | 2\n-9 | 3 | 4\n8 | -1 | -3)


Expanded form:

(-2\/5 | -1\/5 | 2\/5\n-9\/5 | 3\/5 | 4\/5\n8\/5 | -1\/5 | -3\/5)


Dimensions:

3 (rows) × 3 (columns)


Characteristic polynomial:

-x^3 - (2 x^2)\/5 + (6 x)\/5 - 1\/5


Diagonalization:

M = S.J.S^(-1)\nwhere\nM = (-0.4 | -1\/5 | 0.4\n-1.8 | 0.6 | 0.8\n1.6 | -1\/5 | -0.6)\nS = (-0.605047 | 0.541898 | 0.642096\n-0.955547 | 0.420583 | -1.83346\n1 | 1 | 1)\nJ = (-1.37697 | 0 | 0\n0 | 0.18292 | 0\n0 | 0 | 0.794045)\nS^(-1) = (-0.827734 | -0.0367949 | 0.464023\n0.322388 | 0.457979 | 0.63268\n0.505346 | -0.421184 | -0.0967033)

ComputingComputing...