Computing...

Input interpretation:

double pendulum


Equation:

theta_(1, f) = theta_(1, f)(theta_(1, i), l_1, m_1, theta_(2, i), l_2, m_2, t) | theta_(2, f) = theta_(2, f)(theta_(1, i), l_1, m_1, theta_(2, i), l_2, m_2, t) |  \ntheta_(1, i) | initial angle from vertical 1\nl_1 | length 1\nm_1 | mass 1\ntheta_(2, i) | initial angle from vertical 2\nl_2 | length 2\nm_2 | mass 2\nt | time\ntheta_(1, f) | final angle from vertical 1\ntheta_(2, f) | final angle from vertical 2\n(assuming the system is initially at rest)


Input values:

initial angle from vertical 1 | 57°  (degrees)\nlength 1 | 1 meter\nmass 1 | 0.1 kg  (kilograms)\ninitial angle from vertical 2 | 25°  (degrees)\nlength 2 | 1 meter\nmass 2 | 0.1 kg  (kilograms)\ntime | 10 seconds


Result:

final angle from vertical 1 | -121.9 mrad  (milliradians)\n= -6.982°  (degrees)\n= -6 degrees 58 arc minutes 54.35 arc seconds\nfinal angle from vertical 2 | -697.4 mrad  (milliradians)\n= -39.96°  (degrees)\n= -39 degrees 57 arc minutes 33.32 arc seconds

Contact Pro Premium Expert Support