Computing...

Input interpretation:

harmonic oscillator


Equation:

omega = omega_d | A = (A_d omega_0^2)\/sqrt((omega_0^2 - omega_d^2)^2 + (2 zeta omega_0 omega_d)^2)\nphi = tan^(-1)(omega_0^2 - omega_d^2, 2 zeta omega_0 omega_d) |   |  \nomega | angular frequency\nomega_0 | natural angular frequency\nzeta | damping ratio\nA_d | driving amplitude\nomega_d | driving angular frequency\nA | amplitude\nphi | phase


Input values:

natural angular frequency | 6 rad\/s  (radians per second)\ndamping ratio | 0.2\ndriving amplitude | 1\ndriving angular frequency | 10 rad\/s  (radians per second)


Result:

angular frequency | 10 rad\/s  (radians per second)\n= 573 °\/s  (degrees per second)\namplitude | 0.5267\nphase | 2.783 radians\n= 159.4°  (degrees)\n= 159 degrees 26 arc minutes 38.24 arc seconds

Contact Pro Premium Expert Support