Computing...

Input interpretation:

Sackur-Tetrode equation


Equation:

S = N k (log(V\/N ((4 pi m U)\/(3 N h^2))^(3\/2)) + 5\/2) |  \nS | absolute entropy\nN | particle number\nV | volume\nU | internal energy\nm | mass of a particle\nk | Boltzmann constant (~~ 1.38065×10^-23 J\/K)\nh | Planck constant (~~ 6.62607×10^-34 J s)\n(assuming a monatomic ideal gas)


Input values:

particle number | 6.02×10^23\nvolume | 1 m^3  (cubic meter)\ninternal energy | 3 J  (joules)\nmass of a particle | 1 u  (unified atomic mass unit)


Result:

absolute entropy | 50.76 J\/K  (joules per kelvin)\n= 3.168×10^20 eV\/K  (electronvolts per kelvin)\n= 5.076×10^8 erg\/K  (ergs per kelvin)

Contact Pro Premium Expert Support