Computing...

Input interpretation:

Fermat\'s little theorem (mathematical problem)


Statement:

For p a prime and a a positive integer not divisible by p, a^(p - 1) - 1 congruent 0 (mod p).


Formal statement:

(for all)_({p, a}, p element P && a element Z^+ && a mod p!=0)(a^(p - 1) - 1) mod p = 0


History:

formulation date | 1640  (377 years ago)\nformulator | Pierre de Fermat\nstatus | proved\nproof date | 1736 (96 years later)  (281 years ago)\nprovers | Pierre de Fermat  |  Gottfried Leibniz  |  Leonhard Euler


Associated equation:

(a^(p - 1) - 1) mod p = 0


Classes:

solved mathematics problems  |  mathematics theorems

Source information
Contact Pro Premium Expert Support