Wolfram|Alpha

Computing...

Input interpretation:

007 shape-like curve  (popular curve)


Associated fictional character:

James Bond


Equations:

Parametric equations:

x(t) = ((-2\/5 sin(9\/8 - 14 t) - 1\/3 sin(30\/31 - 9 t) - 517\/8 sin(11\/8 - 2 t) + 623\/9 sin(t + 19\/5) + 159\/7 sin(3 t + 31\/11) + 100\/11 sin(4 t + 24\/7) + 37\/7 sin(5 t + 32\/7) + 78\/77 sin(6 t + 31\/12) + 77\/12 sin(7 t + 37\/14) + 15\/8 sin(8 t + 1\/31) + 16\/5 sin(10 t + 26\/11) + 7\/9 sin(11 t + 4\/3) + 13\/14 sin(12 t + 4\/11) + 9\/10 sin(13 t + 19\/12) + 3\/4 sin(15 t + 6\/7) + 4\/7 sin(16 t + 3\/7) + 3126\/11) theta(27 pi - t) theta(t - 23 pi) + (1079\/12 sin(t + 37\/9) - 1643\/8) theta(23 pi - t) theta(t - 19 pi) + (1160\/13 sin(t + 45\/11) - 5248\/11) theta(19 pi - t) theta(t - 15 pi) + (-1\/13 sin(9\/7 - 19 t) - 3\/5 sin(5\/11 - 12 t) - 8\/9 sin(7\/6 - 10 t) - 22\/15 sin(13\/11 - 7 t) + 1423\/9 sin(t + 2) + 19\/11 sin(2 t + 16\/7) + 198\/13 sin(3 t + 20\/7) + 13\/8 sin(4 t + 3) + 45\/11 sin(5 t + 23\/6) + 10\/7 sin(6 t + 26\/7) + 13\/11 sin(8 t + 53\/12) + 13\/14 sin(9 t + 2\/7) + 9\/11 sin(11 t + 18\/13) + 11\/17 sin(13 t + 9\/4) + 5\/16 sin(14 t + 4\/13) + 4\/9 sin(15 t + 139\/46) + 1\/9 sin(16 t + 14\/9) + 3\/13 sin(17 t + 19\/5) + 1\/8 sin(18 t + 34\/9) + 1\/5 sin(20 t + 47\/10) + 1\/12 sin(21 t + 1) + 5873\/13) theta(15 pi - t) theta(t - 11 pi) + (-10\/7 sin(23\/17 - 16 t) - 13\/6 sin(3\/7 - 8 t) - 171\/43 sin(7\/5 - 4 t) - 910\/9 sin(9\/7 - 2 t) + 994\/11 sin(t + 31\/8) + 337\/9 sin(3 t + 34\/13) + 96\/11 sin(5 t + 14\/3) + 51\/8 sin(6 t + 25\/8) + 31\/6 sin(7 t + 52\/15) + 53\/15 sin(9 t + 23\/6) + 37\/10 sin(10 t + 33\/10) + 7\/4 sin(11 t + 1\/8) + 17\/7 sin(12 t + 31\/8) + 20\/21 sin(13 t + 34\/11) + 3\/5 sin(14 t + 23\/5) + 41\/42 sin(15 t + 16\/7) + 9\/7 sin(17 t + 37\/14) + 3\/7 sin(18 t + 1) + 8\/13 sin(19 t + 13\/3) + 8\/15 sin(20 t + 21\/11) + 80) theta(11 pi - t) theta(t - 7 pi) + (-4\/5 sin(10\/11 - 6 t) - 7\/6 sin(1\/8 - 4 t) - 15\/7 sin(3\/11 - 2 t) + 2011\/13 sin(t + 18\/5) + 337\/25 sin(3 t + 25\/9) + 29\/8 sin(5 t + 33\/16) + 9\/8 sin(7 t + 11\/9) + 2\/7 sin(8 t + 46\/11) + 4\/9 sin(9 t + 3\/8) + 1\/5 sin(10 t + 21\/8) + 2\/7 sin(11 t + 50\/11) + 11\/21 sin(12 t + 5\/7) - 2258\/11) theta(7 pi - t) theta(t - 3 pi) + (-1\/15 sin(1\/6 - 10 t) - 3\/14 sin(1\/2 - 8 t) - 4\/7 sin(6\/13 - 6 t) - 8\/7 sin(1\/8 - 2 t) + 1877\/12 sin(t + 29\/8) + 165\/13 sin(3 t + 23\/8) + 14\/13 sin(4 t + 5\/11) + 44\/13 sin(5 t + 15\/7) + 5\/6 sin(7 t + 14\/9) + 1\/5 sin(9 t + 1\/34) + 3\/13 sin(11 t + 43\/12) + 1\/3 sin(12 t + 1\/3) - 6191\/13) theta(3 pi - t) theta(t + pi)) theta(sqrt(sgn(sin(t\/2))))\ny(t) = ((-23\/8 sin(3\/2 - 7 t) - 25\/3 sin(10\/7 - 5 t) - 68\/3 sin(7\/9 - 2 t) + 515\/8 sin(t + 31\/7) + 6 sin(3 t + 25\/9) + 220\/17 sin(4 t + 4\/7) + 57\/14 sin(6 t + 5\/2) + 12\/7 sin(8 t + 145\/48) + 11\/7 sin(9 t + 17\/8) + 19\/11 sin(10 t + 4) + 5\/8 sin(11 t + 45\/13) + 11\/9 sin(12 t + 10\/11) + 13\/8 sin(13 t + 27\/8) + 8\/9 sin(14 t + 9\/5) + 11\/12 sin(15 t + 11\/16) + 2\/5 sin(16 t + 12\/7) + 883\/12) theta(27 pi - t) theta(t - 23 pi) + (153\/4 - 2229\/16 sin(11\/7 - t)) theta(23 pi - t) theta(t - 19 pi) + (415\/3 sin(t + 47\/10) + 118\/3) theta(19 pi - t) theta(t - 15 pi) + (-5\/14 sin(4\/11 - 20 t) - 2\/11 sin(2\/11 - 19 t) - 11\/16 sin(8\/11 - 10 t) - 15\/11 sin(7\/11 - 9 t) - 13\/11 sin(1\/8 - 8 t) - 29\/15 sin(7\/8 - 7 t) - 11\/10 sin(10\/9 - 4 t) + 401\/9 sin(t + 33\/10) + 27\/5 sin(2 t + 8\/11) + 301\/25 sin(3 t + 25\/6) + 79\/12 sin(5 t + 40\/9) + 9\/13 sin(6 t + 41\/15) + 6\/11 sin(11 t + 43\/14) + 3\/4 sin(12 t + 8\/7) + 1\/5 sin(13 t + 30\/11) + 12\/23 sin(14 t + 7\/12) + 2\/3 sin(15 t + 31\/7) + 2\/9 sin(16 t + 36\/11) + 3\/10 sin(17 t + 35\/9) + 1\/7 sin(18 t + 7\/6) + 1\/6 sin(21 t + 25\/6) + 4379\/22) theta(15 pi - t) theta(t - 11 pi) + (-5\/9 sin(6\/5 - 12 t) - sin(9\/10 - 9 t) - 41\/6 sin(6\/5 - 7 t) - 273\/20 sin(20\/13 - 5 t) - 127\/9 sin(4\/11 - 4 t) - 219\/4 sin(35\/34 - 2 t) - 1538\/9 sin(11\/7 - t) + 341\/19 sin(3 t + 17\/5) + 29\/5 sin(6 t + 23\/13) + 8\/5 sin(8 t + 19\/14) + 5\/3 sin(10 t + 27\/7) + 11\/7 sin(11 t + 63\/62) + 15\/11 sin(13 t + 43\/12) + 19\/13 sin(14 t + 7\/6) + 7\/8 sin(15 t + 47\/12) + 1\/3 sin(16 t + 41\/13) + 13\/19 sin(17 t + 8\/3) + 1\/4 sin(18 t + 31\/12) + 8\/13 sin(19 t + 45\/11) + 5\/7 sin(20 t + 27\/13) + 629\/8) theta(11 pi - t) theta(t - 7 pi) + (-2\/13 sin(26\/17 - 10 t) - 3\/8 sin(9\/11 - 8 t) - 948\/5 sin(11\/7 - t) + 2 sin(2 t + 19\/10) + 103\/7 sin(3 t + 61\/15) + 6\/5 sin(4 t + 11\/12) + 35\/11 sin(5 t + 60\/17) + 5\/7 sin(6 t + 1\/6) + 9\/10 sin(7 t + 57\/23) + 5\/9 sin(9 t + 7\/4) + 1\/8 sin(11 t + 4\/5) + 1\/6 sin(12 t + 18\/5) + 301\/9) theta(7 pi - t) theta(t - 3 pi) + (-1\/11 sin(2\/11 - 8 t) - 953\/5 sin(14\/9 - t) + 34\/35 sin(2 t + 14\/9) + 365\/26 sin(3 t + 33\/8) + 1\/11 sin(4 t + 14\/11) + 30\/11 sin(5 t + 87\/25) + 1\/6 sin(6 t + 7\/8) + 3\/5 sin(7 t + 8\/3) + 1\/5 sin(9 t + 16\/5) + 1\/13 sin(10 t + 5\/9) + 1\/5 sin(11 t + 58\/13) + 1\/24 sin(12 t + 11\/9) + 477\/13) theta(3 pi - t) theta(t + pi)) theta(sqrt(sgn(sin(t\/2))))


Properties:

James Bond curves  |  logo curves

ComputingComputing...