Wolfram|Alpha Engineering

Control Systems

Control Systems

analyze a transfer function model
transfer function (s^2-3)/(-s^3-s+1) control systems transfer function {1/(s-1),1/s}
analyze a state space model
state {{0,1,0},{0,0,1},{1/5,-1,0}}, input {{0},{0},{1}}, output {{-3,0,1}} state {{0,1,0},{0,0,1},{1,-1,0}}, input {{0},{0},{1}}, output {{0,1,0}}, sampling=.2
specify a standard system
control system integrator
compute a response
transfer function s/(s^2-2) sampling period:0.5 response to UnitStep(5t-2)
calculate properties of a control system
poles of the transfer function s/(1+6s+8s^2) observable state space repr. of the transfer function 1/s
generate frequency response plots
Nyquist plot of the transfer function s/(s-1)^3 Bode plot of s/(1-s) sampling period .02
generate a root locus plot
root locus plot for transfer function (s+2)/(s^3+3s^2+5s+1)